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ABSTRACT

The asymptotic behavior of the systems Xn+ 1  Xn + a b(X )

+ a c(Xn)i and dy = b(y)dt + /a(t) o(y)dw is studied, wheren fl

{ } is i.i.d. Gaussian, {& } is a (correlated) bounded sequence ofn ' n

random variables and a on A0/log(AI+n). Without { }, such algorithms

are versions of the 'simulated annealing' method for global optimization.

When the objective function values can only be sampled via Monte Carlo,

the discrete algorithm is a combination of stochastic approximation and

simulated annealing. Our forms are appropriate. The {4 n are the

.annealing' variables, and {E 1 is the sampling noise. For large A0,

a full asymptotic analysis is presented, via the theory of large deviations:

Mean escape time (after arbitrary time n) from neighborhoods of stable

sets of the algorithm, mean transition times (after arbitrary time n)

from a neighborhood of one stable set to another, approximate asymp-

* totic invariant measures, and location of the values of {X n  or y(')

the case where Eb(x,) = b(x) is the (negative) of a gradient of a

function B(x), and application to global function minimization via Monte

Carlo methods.

Key words. Monte Carlo, stochastic approximation, large deviations,

simulated annealing, global function optimization from noisy

samples
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1. Introduction

We stud the asymptotic behavior of the system j ' .

(I- rov- P1274 A1 J, t- "f

(1.1) X 1 = X + anb(Xn , ) + an(Xn X E Rr

where { n is a sequence of bounded random variables, {1Pn is a

sequence of zero mean independent and identically distributed (i.i.d.)

Gaussian random variables, the two sequences are mutually independent and

an = A0/log(n+AI), A0 > 0, A1 > 1. The cT(.) and b(.,E) are Lipschitz

continuous, uniformly in , and o(.) is bounded.

Such stochastic approximation algorithms are a Monte-Carlo version

of the currently popular 'annealing' method for locating the global

minimum of a function with many minima [1]-[3]: For example, let B(.)

* denote a continuously differentiable function and set Eb(x,En) = b(x) =
n

-S (x). Suppose that noise corrupted samples of b(x), namely b(x,E),

are available from an experiment or a simulation on a system whose 'mean'

performance is B(x) at parameter value x. Then the algorithm Ynl =

Yn + a nb(Y n, n) is a standard form of a stochastic approximation method

for locating a local zero of b(.) or local minimum of B(.) under

appropriate conditions on {a n . The O(x)P term might be added arti-",'- n

ficially, following the usual logic of the 'annealing' scheme, in order

to force the sequence to jump around until it eventually 'settles' near

a global minimum of B(.). When only random samples b(x,E) are avail-

able, the situation is much more complex than in the non-random sampling

case. It is important to allow the {{n } to be correlated, since (a) many

efficient Monte Carlo methods (e.g., antithetic variables) require cor-

related noise, or (b) simulations are often run on a continuously operating

system, where the noise is inherently correlated.
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The theory of large deviations [4], [5), [7), provides the appropri-

ate methods, and allows us to obtain a fairly complete characterization

of the asymptotic location of and behavior of the {X n}.

If the rate of decrease of a is 'faster' than 0(1/log n), then, , n

(under broad condition) {Xn I will converge w.p.l, and not continue to

" 'try' to escape from the stable set of the algorithm in which it is

trapped. In general, if o(x) I or EF(x) -B -x(x) # b(x,C) for all

7. F, the algorithm does not necessarily (asymptotically) spend most time

near a global minimum of B(.), but the theory tells us just where it

does spend most of its time. There are practical alterations of (1.i)

for which {X I would eventually spend most time near a global minimum,
n

and these are discussed in Section 5. One form of the alteration requires

a specific 'cyclic' correlation among the {.i. Very similar results

hold for the diffusion

(1.2) dy 1b(y)dt + 0 o(y)dw...1og (t+A1 )

Section 2 defines a number of terms and results from the theory of

large deviations which are useful for the further formulation of our prob-

lem. In Section 3, we treat the mean (asymptotic) escape time of {X d

from a set containing a stable set for the algorithm (1.1). Such quanti-

ties are important in the stud), of any such algorithm, since they provide

useful information on the stability of the algorithm, convergences, etc.

In Section 4, we treat a global problem, where there are (possibly) many

[ 
* .

- A - * A o -A.A .



stable and unstable sets for (1.1) (i.e., for the ODE k = Eb(x,&)). The

asymptotic formulas for the mean transition time between these sets is

obtained, as is the (conditional) transition distribution of a certain

chain associated with the asymptotic behavior - whose properties yield

the mean transition and sojourn times, 'near' invariant measures, etc.

Section 5 contains extensions: the form of the result for It8 equation

models, the case where -b(x) is obtained from a gradient of a potential

function, and applications to the problem of global minimization of a func-

tion via Monte Carlo methods, and estimates of the asymptotic measures for

{Xn } and y(.).

In the more standard works in 'simulated annealing' [1] to [3] the

objective function values are known exactly - and the algorithm can 'move'

by large steps. Here and in [8] the parameter set is not discrete and the

%algorithm moves only in small steps. With this constraint, the various

algorithms are all quite similar - in that the transition probabilities

are close. Often moving by small steps makes sense - particularly when the

parameter set is not discrete. Of course, we allow sampling noise and/or

imprecise measurements. The results in [8] are special cases of the results

here.

Numerous variations are possible - with rather similar results, although

the proofs might involve somewhat more details. E.g., the c(Xn) can be

periodic. In the sampling noise case, this might make sense. The direction

of iteration of (1.1) can be chosen at random - or several (a random number)

steps can be taken in each direction. Approximations to Gaussian noise

{' n} can be used - with results close to those obtained here.

n
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2. Definitions and Assumptions

In order to simplify part of the notation later on, we actually work

with slightly altered {i*n }. We truncate *n so that a. - 0 w.p.l

but the truncation level goes to - as n - . This can be done since

for each 6 > 0

P{ajn> 6 > 0} < exp-6 /2a = Yn

2
for some a > 0, where y< -. In calculating the action functionals

n

below we can use either n or their truncated version, and then take

limits. The result is the same. The procedure is unrestrictive, since

we are interested in the 'tails' of the {Xn I and related processes. We

continue to use the tn notation - but also assume that (eventually)

anl nI is as small as desired.

For the case of independent and identically distributed {n }, define

the H, H and L functionals in the usual way in the theory of large
0

deviations: Let b(x) = Eb(xEn) and define

Ho(a,x) = log E exp a'[b(x,C) - b(x) * a(x) ]

(2.1)

= log E exp at [b(x,E) - U(x)]+ a'a(x)Eao(x)a/2.

where E cov i,

H(a,x) = a'b(x) + H 0 (a,x)

L(B,x) = sup[16' - H(a,x)] = sup[a'(a - b(x)) - H0(cx,x)].
a °a

It is often convenient to treat L(*,') as a function of 6 - -(x) and

Kx
1%*" X

" -i'%

, -.. ,. ,'. .. .. .., , , - ,. . .- .-.'. .., .' ..,' , .... , ," ., .,v ,. .- -,. .. .., ( . '. : ::7
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Generally, we assume that there is a continuous function H 1 ,x) ,

differentiable in a, and a Lipschitz continuous F(.), such that for any

"- bounded stopping time v and associated a-algebra B = B(&
V iAV'

*iAV, i <

V+N
b(x) = um E b(x,ei)N B V bx1

(2.2)
1V+N-I

HI(a,x)  lim log EB exp a, [b(Xn) - b(x)],
N V n=v

where the convergence is uniform in w and v and in (x,a) in any

compact set; for example, any finite state ergodic Markov chain {E n

will do, as will the 'cyclic' noise of Section 5, or any sufficiently

strongly (and stationary) mixing process. We now define

H0 (a,x) = ac'(x)Ea,(x)a/2 + H,(a,x)
and

H(a,x) -a'b(x) + H0 (a,x).

For each T < , define the action functional S x(T, ) as equal

to = for not absolutely continuous, and otherwise

Sx(T,O) = L( (s),4(s))ds, 4(O) x.
0

Let U(x) denote the set {: L(B,x) < ', with closure U(x).

U(-) is convex and upper semicontinuous (in the Hausdorff topology) in

that lim U(Xn) c U(x). In the i.i.d. case
x -Ix
n

U(x) b(x) + co[b(x,) - b(x) + a(x)] -(x) + Uox),

* - .v. ..

',: ' :'- ." - "" ' .. .. " " " " '" . . .- - " " ,"' ". . .• " " " "". "" " . ".
" '-'' -'

" . ".' "A "" - "- '"-" " " " ' " " " - -" "
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where co is the closed convex hull over the (a.s.) range of ~ '

Information on U(-) in the general case is in [6, Section 3) and in

[4,5]. The U 0(x) will be a set of 'control values' for the differential

equation

(2.3) * = (x) + u, u(t) E U (x(t)).

U 0(x) and (2.3) give approximations to the possible noise determined

paths of the continuous parameter interpolation of the {X n , with in-

terpolation intervals {a }. We always assume that U(-) is cont-inu-
n

- ous in the Hausdorff topology.

In the i.i.d {~} case, if there is a F > 0 such that

cov[b(x,E) - b(x) + ar(x)4'] = > 0, we say the system is non-degenerate.

if E(x) is singular for some x, then the case is said to be degenerate.

In general, let

N N
cov [b(x,E.) - b(x) + ax$]EEN() Zx

111 F (X) Zl2(X)1
L21x p22(x

The system is said to be non-degenerate if E(x) > > 0. Consider

the special form of the degenerate problem where Z11 (X) = 1 (X)

E 2 (X =0, E 22 (X) > 22 > 0. Then we can write (use x =(x 1,x2)

a a = etc.)

Xl,n+l l ,n an 1 n

X2,n+l 2,n a n b2 Xnl~ n nY n nn
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Define

N
HN(t,x) -- N log E exp a a'[b(x, i) - b(x) + a(x) I,

Nand let HNN and ac denote the gradient and Hessian matrices (with

respect to a), resp. Then HN(ax) > 0, HN, a(0,x) = 0 and HN,aa(OXx)

E (x). Let T denote an arbitrary compact set. Since HN(x,a) -
NN

H(x,a) > 0 and HN (,x) is convex, in the non-degenerate case H(.,x)

is strictly convex in some neighborhood of a = 0 which does not depend

on x, for x E K. This implies that there is a 61 > 0 such that for

a in the 6l-neighborhood N6 (T(x)) and x E K, L(a,x) is uniformly61

bounded also L(b(x),x) = 0, L (b(x),x) = 0 and L(.,x) is strictly

convex in N, (b(x)). Thus L({,x) = o(j -b'(x)I). For the above special
1

form of the degenerate case, L(B,x) = unless = bl(x). There is a

61 > 0 (61 not depending on x in K) such that for x E K, 82 E

N 6 (b2 (x)) and 6, = b (x), L(8,x) is uniformly bounded, also,

L 2 (b(x),x) = 0 and L(bI(x),',x) is strictly convex for 82 E

N6 (b2 (x)) and L(bl(x),6 2,x) = o(8 2 -b 2 (x)I).

Define {X } and xE( ') by
n

X X Eb(X 'n ) + Ea(X)nn+l n nnnn

(2.5)
x (t) = XE on

n

A piecewise linear interpolation could also be used to define x (').

Under our conditions, mild alterations of the arguments in [4] can be

used to show that S (T, ) is an action functional for {xY(.)} in

we-
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the sense that: for any T and any Borel set A (with interior A0

and closure A) in C r [0,T], the space if Rr valued continuous functions

on [0OT] with initial value x,

-inf 0 S (TO) < lini c log P X{x C(.)EA)

(2.6) OEA x C

< lm Elog P fxcE(-) A) < -inf S x (TA)).

For each fixed T, let (D (T) = {0~: S (T,)) < s), a compact set [4].
S x

Then for any 6 > 0 and d > 0, there is an c0> 0 such that for

C <~ [ 4] (d(-,-) denotes the appropriate distance)

(2.7) p {d(xL(.),4&x(T))> 6) < exp-(s-d)/E.x s -

The uniformity of convergence (conditional on x,B V in the defini-

tion (2.2) of H(ct,x) has some consequences which will be quite

important in the sequel. First, it is convenient to introduce some ad-

ditional terminology. Let T denote a stopping time with respect to

the family of a-algebras {B ~i i < t/e))l {B C(t)}, and let B C ()

iii

denote the associated 'stopped' a-algebra. Let P (.0 denote the
C

probability measure for x (.), conditioned on B E) and on xt Cnu) = X.

When using this terminology x be in the

*a.s. range of x C(T), and we always assume this. Equivalently, we can

-- assume that PXB (T) is the conditional distribution for the process

which is reset to value x at time T and then continues to evolve as

before. Then (2.6) and (2.7) can be replaced by (2.6'), (2.7'),

the convergence in (2.6') and the bound in (2.7') are uniform in T, w

and in x- in any compact set.
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-info0 Sx(T,O) < lim c log Px,B (T{x) x(T-.)EA

(2.6') EA x x,
: [.-< lim C log P x,B (T){(x C(T*.)EA) < -inf S x(T,¢),

C C EA

(2.7') P {d(xc(T+.),o x (T)) > 6} < exp-(s-d)/c.
XB C(T) s -

This result is discussed in [6] and follows from the calculations in [4].

Indeed, the convergence proofs in [4] for the unconditional form depends

only on the convergence in the definition (2.2), and the estimates and

convergence (2.6', 2.7') will be uniform in any parameter in which the

convergence in (2.2) will be uniform.

-4Z

1 . ",
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3. The Escape Time Problem

Let K denote a compact stable invariant set for

(3.1) * =

and G a bounded open set containing K0 , with a piecewise differentiable

boundary aG and with G in the domain of attraction of K0 ; i.e., all

trajectories starting in G converge to K For each n > 0, define

{X } and xn(.) by X= x and

kk 0+ (X)

k+l - k n+k +  an+k"(Xk)'n+k

(3.2)

n[~ 1=0 k n n
:](~ (t) =X k  for t E an ,  an~ 'kl

k for. i=0 i=O n+i) [t

(3.2) is the actual process with which we work in order to study the tail
I n xn

of the {X n. Set T = min{t: x() G}. In this section, we will

compute the asymptotics of {Tn, for x E G under the following 'con-

trollability' condition:

A3.1. For each 6 > 0 there is a p-neighborhood N (Ko) of K0

and 6 > 0, T < -, such that for each x,y E N (K0), there is a path

0(.): 0(0) = x, O(Ty) = y where T < T and S (T ,) < 6.
y y - P- xp -

The condition is not very restrictive, and holds in 'typical' cases.

... It is a natural generalization of the usual non-degeneracy assump-

tion which is used in large deviations work with diffusion processes -

where the analog of (A3.1) always holds. For example, let b(x) = 0 in

K0  and let the problem be non-degenerate (e.g., let cr(x)Za'(x) > 0

'.1,0

-ll..
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on K10). Then (A3.1) follows from L(8,x) =o(jB-UW(x)f) (see

above 2.5).) Alternatively, assume non-degeneracy. For each y > 0

there is a T Y< - such that the y-neighborhood of the path of (3.1)

on [0,T Y ] which starts at any x E KOJI covers K 0. (A3.1) follows from

these facts and the fact that S(T,c ) = 0 for functions (.) satis-

fying (3.1). In typical applications to global minimization by Monte

Carlo, (A3.1) and (3.3) below holds, since coy ipn > 0 and c(x) =identity

matrix.

Define

S(x,y) = inf {S(t, ): (0) = x,4(T) =y)

and, for x E G,

SG(x) = inf S(x,y) -inf{S(T,O): 0(0) = x, (T) E G}
yE3G 4OT

S G(B) = inf S G(X).
xEB

By (A3.1) and the fact that S(T,cO) = 0 if 0(-) satisfies (3.1),

S G(x) is constant on K0and SG (x) < S G(K 0) for x E G. The

S(.,.) and S G(-) are lower semicontinuous functions (this result does

not require (A3.1)) [4]. Also

S(X,y) = liM liM liM E log PxT _S T},
T-*w 6-0 e- -0

where T6= infft: x E(t) E N 6(y)}.

In Theorem 1, we will have use for the following auxiliary result.

N *:.:>: :i7
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Lemma 3.1. Under (A3.1) and the other conditions assumed above, for

each y E G, S(x,y) (resp., SG(x)) is continuous at each x E K0.

Outline of proof: The proof uses the controllability condition to

construct 'nearly' optimal paths. Let S(x,y) < -. Otherwise, a similar

proof yields S(xn y) -+- as x n -+ x E K0. By the controllability (A3.1),

for x,x' E Ko, and any sequence xn - x, S(x,x') = 0, S(xn ,X) - 0 and

S(X,Xn) n 0. Then the lemma follows from

S(x n,y) < S(xnX) + S(x,y)

S(x,y) < S(x,xn) + S(xn,y),

-S(x,xn) < S(x ,Y) - S(x,y) < S(x ,X). Q.E.D.
n,- n - n

Let G denote a p-neighborhood of G.

Theorem 1. Assume (A3.1) and the other conditions above, and suppose

that as p+0

(3.3) SG (X) 4 SG(x), some x E K0 .

Then, for large enough A0,

nn(3.4) lim a n log E xTn= SG (KO)0 x EG.
n

Remark. The continuity condition (3.3) is not very restrictive.

'. , If it doesn't hold for G, it will hold for a small perturbation of G.

'p. It always holds if c(x)Ej41'a(x) is positive definite on G. Other

conditions guaranteeing it, based on the 'controllability' assumption

(A3.1), are in [6, Section 4]. It also holds for the particular replace-
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r
ment for G used in Section 4 (R - U N (Ki)). The proof of Theorem 1

iEJ 1

is an adaptation of that of Theorem 4.1 of [7].

Proof. Part 1. The asymptotic properties and result (3.4) will not

change if we redefine an  as a0 = a1 = A0 9 an = A 0/log n, for n > 1.

Thus, after time 1, we set A1=0. In order to obtain the lower and

upper bounds on the escape times which will give (3.4), we approximate

the {a n } by a piecewise constant process. We will actually work only

with this approximation, but the general result will follow readily from

it. Fix a > 1 but close to 1. We divide the 'discrete' time into

sections {[l,nl), [nl,n 2),.} such that the ratio of the an value

4 at the start of a section (a ) to that at the end (a ) is roughly

a. Thus (if nk is not an integer, use any 'nearest' integer)

qa

(3.5) nk+ 1 = n n1 >1.

For n E [nk,nk+,), k > 1, define
ky k~k

bn /log n Ek = (A /log nl)/ak

We call [nk,nk ) the kth section. In the (continuous parameter)

interpolated time scale, this section has length

(3.6) £k [n k+l- los 1) ak 1 AOA 3 exp[a k log nl-k log a],

A3 = (1/log n )(nI - .

k
This interval is larger than A0exp c0 a (for some c0 > 0) if k

is large enough. The 'interpolated interval' Ek[nk+l-nk] is calle

: . : - ,"- , 5 -,, ., . -, -,:;-. .. , , :.- 4. k- k:. lnk]. is. ca;::.;.';..'' ". - . : -. ......-
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the interpolated k-section.

We now define the analog of (3.2) with piecewise constant coeffici-

k -k kents. Define {X Iand x () as follows. X = x and for each k
n 0

(3.7) X [X b(Xk,C + aCXk)V, 11
n1 n n n n k+n n n k n

where an = ck for the first (nklnk terms, ak = k for the next
n kk~lk)n k~l

(nk+2-n k+l terms, etc. To define the piecewise constant continuous

parameter interpolation xk(.) of {7k), we use interpolation intervals-' kn
k

{a n }. Let Bk(t) denote the minimal a-algebra measuring all the

data {,pi starting from time zero up to that used to calculate

x(t).

Define Tk = min{t: x() G}. Let T denote the escape time from

G for the process x.) introduced in (2.5). Then

,- (3.8a) lim £ log ExTe = SG(K0), x E G.
E

((3.8a) will be obtained as a by-product of the development below.) We

will show that

(3.8b) lim Ek log ExTk = SG(Ko), x E G.
k

The theorem readily follows from this and the arbitrariness of a. The

key to the development is the fact that replacing c by £k in (3.8a)

and taking limits as k - yields (in the sense of logarithmic asyr.p-

totic equivalence)
kk

Ex T k exp(SG(Ko)a k/Ao),



and for large A0  the ratio of the quantity in (3.6) to this expression,

namely

S(3.9) N' F (exp c0ak)A0

exp(SG(K0 )t /A0 )

goes to infinity very fast as k - m.

Part 2. Assume SG(K 0) < -. Otherwise a similar proof yields the

result. Fix d > 0. Choose 0 < 11 < 2 < V)3 Ti' T2 p T3 ' (T2 > T3)'

h > 0 and 6 > 0 such that the following hold: (a) for any initial con-

dition x E G - N I(K 0), the path of (3.1) gets into N I(K) by time

T1 and never leaves N 2(K0) after that; (b) for each point x E R 2(K0 )

there is a path x (-) such that 4X(o) = x, 0x(t) 9 Gh = N h(G) (the

h-neighborhood of G) for some t < T3 and

Sx (T3,x) < SG(KO) + d/4;

(c) there is a path with cost < d/8 connecting any x,y E _N (K0) in

3
time < T2 - T3 '

The requirement (c) can be satisfied owing to (A3.1). The require-

ment (b) can be satisfied owing to the 'continuity' (3.3), and (a) can

be satisfied since K is the only limit set in G (or in Gh, for

small h) for (3.1).

Part 3. Let Nk denote the number of intervals of length T in

the interpolated k-section. By (3.6), there is a c1 > 0 such that

Nk > exp c1ak for large enough A0. We will next evaluate (3.10), an

upper bound for ExT
u p p e r x"
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(3.10) Ex k < T Px {Tk > nT}

-k
Let PB t denote the probability measure for x(.), conditioned on

k
Bk(t). Until after (3.14) let nT < Ek(nk+l-n k). Note that

(3.11) Px{Tk>nT} = E [l - PBk(nT-T) {Tk-(nT-T)<T}] {Tk>nTT } .

We have (A and B are defined by the two events described in the middle

term of (3.12))for T = T1 + T2

PBk(nT-T) {Tk-(nT-T) < T + T 2}I Ik>nT-T

> P {xk) goes to N (K0 ) and then stays in N (K),
B B(nT-T) Ill 2 0

(3.12) all on [nT-T,nT-T+T1 ], then leaves G on [nT-T.Tl,nT]}

starting in NV2 (K0) }I{Tk>nTT}

P Bk (nT-T){A n B}I Tk>nT-T}'

We have

inf P {A} >
-k B (nT-T)

w:x (nT-T)EG BknT) -2

for all w for large k. This follows from (2.7') together with the

fact that S y(T,4) = 0 if and only if 0(') satisfies (3.1), and the

fact that all trajectories of (3.1) starting in G stay in N (K

after time T1. Then, for y E N (K0 ) and large k, (2.6') yields

2
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, Bk (nTT+T1) {B}I {Tk>nTT}

> inf p
- k ~ ~B(nT-T+T)y,, :x (nT-T+T )=yEN 12 (K0) k

~(3.13)
(3.13) sup iOY(t)-x-k(nT-T+Tl+t)I < h/4}I{>nTT}

.0 < t < T 3  
k

;.:.- -3

> [exp - [SG(KO) + d/2]/Ek]I{Tk>nTT}

Combining the above estimates yields that (3.11) is bounded above

by

i< 1
(3.14) Px{rk>nT} < E,(I - I exp-(SG(K0) + d/2)/ek]l{k>nTT .

Define

Nk
= [1 exp - (SG(K) + d/2)/ck

Now iterate (3.14) up to n: nT = k(n k+l-n), then use Ek+ 1  for the

next Nk+l, etc. Doing this and substituting into (3.10) yields that

for large k,

ETk < T [1 - exp - (SG(K + d/)/Ek n

n=0

Nk

+ T k8 1 [1 - exp - (SG(K O) + d/2)/£k21n1
n=0

+ T k 13 [1 - exp - (S(;(K) + d/2)/E2] ..
kkln=0 +

In order to estimate the terms in the sum beyond the first, note that

,. ...... ....,.... ..... +......... ...... ............., . : >.,, , -. . ., . ... .. . . .. : :,:

" " -, i " "+ , " + v .. .,: . .. .. . ... .. .... , ¢ " "V ' .'',',' ".+' '+' + ','V -'' ."
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,3

.4

8m exp[SG(KO) + d/2]/cm+1

< exp-[Nmexp-(SG(Ko) + d/2)/cm]exp[SG(KO) + d/2]/Em+ 1 ,

which (since Nm exp cI am  for some c1 > 0 if m and A0  are

large) is a term of a summable series. Thus for large k and A0,

Ex'k < T I [I - exp-(SG(K0) + d/2)/ek]n + constant
0

(3.15)

< exp(SG(KO) + d)/ck.

Part 4. For the rest of the proof we let {E n ) e mutually inde-

pendent. This is for notational convenience only. I: allows us to

avoid the notation associated with the conditioning used in (e.g.) (3.12)

and (3.13). In general, we work as in the last part by using appropriate

conditioning and taking sup or inf, as appropriate. In fact, the
"-) W1

proof of Theorem 2 in Section 4 uses the 'full conditioning' argument.

We will need the following lemma, whose proof is only a slight modifica-1,
.1

tion of that of Lemma 2.2 of [7, Chapter 4] or Lemma 1.9 of [7, Chapter 6]

and is omitted. The second part of the lemma will be used in Theorem 2

below (it does not assume mutual independence of

Ler..a 2. For each small a > 0, there are c > 0, T0 < E 0 > 0,

such that for c <-0 and all y E G - N (K0 ) and all T4)

P {' > T4} < exp c (T- T)/E
y Ot 4 4 0

where

T= inf{t: x C(t) £ G - N(K0)).

OL Ot"
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More generally, let T denote a stopping time and let K be compact but

Cnot contain an entire limit set for (3.1). Define TK inft:

xE (T+t) € KI. Then

{y,- > T4 } < exp - c(T4-To)/E.
Py,B (T) K 4- 4-

E

for all finite stopping times i and y E K and C < 0' (P y,BE)

was defined above (2.6').)

We now proceed very similarly to [7, p. 125-6). Since

[1- exp - (SG(Ko) + d/2)/Ek n k* 0

n=Nk

and the contribution to the mean value of T k from paths which do not

exit G before Ek+1 is used is vanishingly small as k-} o, in

calculating a lower bound on the escape time we can and will assume for

(3.7) that ak Ck for all n (or, equivalently, work with x N.n k

for C = Ck) . Define F1 = N(K 0) -N J2(K 0 ), F2 = N i(K 0) U (Rr-G)
3 2 1

and define the stopping times {a.,i} by P0 = 0

. = inf{t > pi x (t) E F 1

= inf{t > oil x (t) E F2}.

The only way for xk(.) to jump from the exterior of N (K 0 into
1.13

N (K0) is if it is pushed there by a very large value of i)n' But

this is ruled out by the comments made in the beginning of Section 2.

-4
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For x E N (KO) and any T4 < 0,

"" Pxjx-k~1 l ) E (Rr-G)} < max Py{ l < T4 }

{ (3.16) E(

+ Pxk P > T4 }

By Lemma 2, for each M < - there is a T4 < = such that the far right

hand term of (3.16) is less than exp-M/k for large k.

Recall that we chose the Vi such that S(x',y') < d/4 for

" x',y' E N (K0 ). By the compactness (for each s,y) and upper semicon-
"" 3

tinuity (in s,y) of the sets !Y(t), there is a 6 > 0 (not depending

on y) such that the paths which start at y E N (K0) and exit G
13

before T4  are at a distance of at least 6 1 from the set

sG(K0d/2 4  (The minimum value of S(T 4 ,) for such an exiting

path must be at least SG(K) d/4.) Then it follows from (2.7) that

for y E F1

(3.17) P y {Tk < T4} < exp-[SG(K0)-d]/'kP

for large k. In fact by the just cited uppersemicontinuity and compact-

ness, we can write max P {Tk < T4 } in (3.17). Then, for a large fixed
yEF1

M and all large k,

P xx(ol)  G} <_ exp-(SG(K0)-2d)/c, x E N (K0).

Define v = min{n: x k(n r G1. Then for x E N1(K0 ))
n V (K 01
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-Px v>n} = Px{x(pi) E N il (KO) all i < n}

= Ex P {x (pn ) E N 1I(K 0) [ -- (Pn l ) }I { v>n- l }

> inI E N (K )}P x{v>n-l}
yENI P (K0 )

1n
> (1 - exp - (SG(Ko) -

2d)/Ek)n

For each {jji}, there is a t1 > 0 such that inf E (p1 - 0) > t1 .
y

Thus

ExTk = EI{v>n(P - Pnl )

> ExI{v>nl(Pn - 1)

_> x{v>n)inf E y(p C

> (constant) exp(SG(Ko -
2d)/k.

This, (3.15), and the arbitrariness of d yield (3.8b). Q.E.D.

k
Remark. The proof with use of coefficients a a follows

n n+k

readily from the above proof and the fact that we can choose a > 1

arbitrarily close to 1. For all practical purposes, the 'piecewise
' ' k

constant' a can be used in lieu of the a'"n an+k '

. . .- - .. '. - - ' " " - . • . ...
, ,, -. . : -". : : . .. . . .. . . . . - . , - . 2 - - i -i . .i . :, - i .. i , i i -i ' i i ; . .-i i . . - - - . -. . . : , . i
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4. Asymptotic (Large Time) Properties of {Xk}

n

In this section, we obtain results analogous to those in [7, Chap-

ter 6] for the {XnI and {xn (.)} of (3.2). Again, we use the 'intermediate'
m

-k
processes {x (')I with piecewise constant coefficients to obtain the

results. Let I = {1,...,m} and let KI,... ,Km denote a collection of

disjoint compact sets, each of which is an invariant set for (3.1), and

such that U K. contains all the limit sets for (3.1). If S(x,)y) = 0
1

for all x,y in any set K, let that K be one of the K. The collec-

tion {Ki} contains all the stable (and unstable) sets for the al-

gorithms (1.1), (2.5) and (3.2), and it is of interest to study the

asymptotic statistics of the movement from a neighborhood of one of the

Ki to a neighborhood of another. This is particularly important for an

- understanding of the use of (1.1) for global minimization (or 'near'

minimization) by Monte Carlo.

We make some additional assumptions.

A4.1. The controllability assumption (A3.1) holds for each Ki,

i = l,...,m replacing K0 there.

Define Sij = S(Ki,K.) = inf S(x,y). By (A4.1), Sij = S(x,y)
iJ 1'.. xEK i, yEK.

1 3
for any x E K. and y E K. and S(x,y) = 0 for x,y E K.. Also,w- -;i

by an argument like that of Lemma 1, S(x,y) is continuous in x,y, for

,P, n x,y E U K..

1n

It is useful to be able to bound the paths x (.)x n.) etc. There

are several ways of doing this. Perhaps the simplest is to project them

bach onto some (large) set D - if thev ever leave D This idea involves

1 1.

,°. *°'. * .. .._.

. .'°. 7,.'°
°
° ... ,"" " " " .'*. ".. " - / . ' .-." . A.. .§ .! t ..~ .-- , At . -,. •,, .. . .
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a number of new considerations and details. A reasonable alternative is

to fix the dynamics such that for some compact set (a sphere, for example)

D1, all paths remain in D1. This is not a restriction in applications,

since in the simulations we can always add a penalty function and choose

o(x), or otherwise fix the dynamics for large jxi to guarantee bounded

paths. For simplicity assume

A4.2. There is a sphere D such that D contains V K. in its

interior and o(x) - 0 as x - 9DI and the trajectories of xc(.)

xn () stay in D All paths of (3.1) starting in D1 stay in D

By (A4.2), we can assume that for small 6 > 0, any 6-optimal path connecting

a small neighborhood of K. with a small neighborhood of K. does not leave1 2

D I.e., we can assume that for small 6 > 0, if (-) is such that

¢(0) = x, t(T) = y, x E small neighborhood of Ki, y E small neighborhood

of K. and Sx (T,4) < Sij + 6, then ,(t) E Dip t < T.

Let Vi be defined as in Theorem 1 but add (fixed henceforth) a

U4 > l43' with the {K (Ki)} disjoint; define gi = N (Ki) and

Z i N IJ3 (K.) - N 2(Ki). The natural analog of the scheme in [7, Chapter 6]

for getting the asymptotics of {xn(.)} or {--k(.)} involves estimating

the probability of the process going from gi to F. and then to gj,

j i, and then calculating the mean times via the particular formulas

developed in [7] involving products of the probabilities of various chains

connecting the {fri,gj). With a few modifications, the results carry over

to our case. We first reproduce some of the notation in [7], adapted to

-- . - ,, . ?' . . . ,'
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our case. The proofs here will be simpler than these in [7), since the

set D in [7, Chapter 6] is replaced here by a set of the form

Rr - U gi, for some subset J c I, and the N i(K.) are 'small' neigh-
jEJ

borhoods.

Let J denote a subset of I with I members where t < m. Define

gj by gJ = U gi. By slightly altering the N (K.) we can assume
iEJ 1

that the boundaries are as smooth as desired. A J-graph is defined to

be a set of m-1 arrows {y-)..} connecting points in I, where y E I-J,

6 E I and there are no cycles, and each point in I-J has one and only

one arrow leaving it. G(J) denotes the collection of J-graphs. By

the symbol g E G(i --/-> J), we mean a collection of m-t-l arrows

{y6}, without cycles, where i E 1-J, y E 1-J, 6 E I and not containing

-* chains leading from i to J.

(. We also use the following definitions. Note that our S in the V

' of [7]. Again, the notation is adapted from [7, Chapter 6]. Define

S.. inf{S(T, ) : (O) E K, $(T) E Ki, 0(t) E U K s t < T}

,,1 3 sbi,

CO if the above set is empty

W- = min I
gEG(J) (y-a6)Eg Y

(4.1)
Mj(K i) = min S Sy6.

Mj(K~) gEG(i-4* 3) (y-'6)Eg

nE
Let TV k and T denote the first entrance times into the

set g3  for the xn., x(.) and x (.) processes, respectively.

- - -,A -, .........
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Theorem 2. Under our conditions, for large AO,

lima log E = lim EE log T = liM E log E T
n k tkJ x J

(4.2)
=W. M(

uniformly for x in any small enough neighborhood of any K..

Remark. If x is not very close to some Ki , then the path tends

to a small neighborhood of some K. 'very fast'. This fact and the1

theorem are enough to give us the relative asymptotic times that {X n )

spends in any set.

Proof: If the set G in Theorem 1 is replaced by Rr - J=

U gi' then the 'continuity' condition (3.3) is not needed owing to
) J

(A4.2), which allows trajectories hitting aG = gj to be extended into

the interior of g at 'small' extra cost, if u is small. The

above G also corresponds to the set D in [7, Chapter 6].

We will prove only the second two equalities of (4.2) for arbitrary

t > 1 and under the condition that all Sij = S(Ki,K.) < -. The equi-

valence of the first two terms follows from the calculations below.

*We proceed as follows. First show the middle equality in (4.2), then

work with x ('). The proof requires Lemma 3 below (our analog of Lemma

2.1 of [7, Chapter 6]). With this lemma the proof can be readily com-

pleted.

The proof of the second equality in (4.1) is similar to that in

Theorem 1. Fix d > 0. Choose TI such that the paths of (3.1) start-

VN
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ing anywhere in D1 get to Ugj by time T, and then stay there (for

the appropriate small i). There is such a T since all the limit

sets of (3.1) are strictly inside U gi" There are T2 < o and

(.) E Cx[0,T 2 ], x E Ki, i E I-J, j E I, such that 01 3(t) E N 1J/ 2 (K.)

for some t < T2 and

( 0) < Sij + d/4,

S(x,x') < d/4 for (x,x') E 3(Ki) and each i.

lWe can also suppose (see proof of Theorem 1) that

PB (),x{xE(T+TI) E U gi } > I, x E D

Set T = T1 + T2 as in Theorem 1, and define S0 = max[S ij.ij]+d. Using

an argument analogous to that in Theorem 1 (part 3) yields that the con-

k
tribution of the time that cz equals c (for m > k) to the mean hitting.n m

time ExTk, J  is bounded above by the expression

N
- exp-Qi/cm) II (1 - exp-Q' /c

1 00 1 l+l

where the Qm satisfy Q1 < So/A Since N > exp for some c > 0

and large m (N is defined at the start of part 3 of proof of Theorem 1)

the above quantity is bounded by

exp[-(exp c1
am )exp(-Sam/AO)Iexp S oa  /A0

which (for large A0) goes to zero faster than a geometric series as

m - 0. Also, as in Theorem 1, the contribution to the mean hitting tire

(ExTkJ) of the part of the path beyond the first Nk interpolated T-

intervals is asymptotically (as k *) negligible. Thus the first equality

n -. ., . , , ° °o . . , . .

.. -- , ,.- . .f', . ,, .- , . '. - ." , ', ' ,. - " - - .. , .- , .'% , .. ,... . - -.- ,
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of (4.2) holds and we need only work with x ().

Define tn, an  by T0 = 0 and

an = inf{t > Tn : xC.) E U r i )
i

T n = inf{ > an- 1 : xE (.) E U g )
1

Let Zn = x (T ). In the following lemma, the 'conditional transition'

probabilities for {Z n } will be estimated.

Lemma 3. Fix d > 0. There is an E > 0 such that for c < E

and all i,j and x E r i  and n > ,

(4.3) exp-(Sij + d/4)/s < P (Tn){Z gj < exp-(S d/4)/.
-* xB n (T n) - d /

(P x,B is defined above (2.6').)

Proof: Fix i,j, i j, and d > 0. There are small {V}, i > 0,

6 >0 and tI < - such that: for each x E gi' there is a path ij(')

on [0,tl] connecting x to Ki , then Ki  to K. and after leaving
13

N (K.) the distance of the path from g. and from g (s # j) is

6P and for which S X (t i, ) < S.. + d/4. There is an c0 > 0 such>_ 0 ,adfo hchS~ I  E-l

that for c < c0  and 6, = 2in(60,1l) and x (Trn x E ri  we have

-P PxBE(Tn){Zn i E gj} > P { sup Ix CtT +t)lW
,, -- B0E_(t 1 -ixBE(T n O<t<t 1 n

(4.4)
> exp-(Si + d/2)/E.

To get the reverse inequality, note that for any t2 < OD
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P x T{Z n+ 1 E gj} < sup P r ( {zn+l E g j
,B(n)- yEri,w n

yr (a )n+l t2 }"<t.. Egi,

. B + sup P2yB (an){Tn~l < t2P Zn+1 E gj).
yErw E

By Lemma 2, for any M < there is a t 2 < - such that for small E

the first term on the right is < exp-M/e.

If x (n) = x E r. and xE (n+t') E g. for some t' < t 2  and if

x E (an+t) f Ks, s i,j for t < t', then for small {j} there is a

62 > 0 such that

(4.6) sup Ix5 (an.t) -(t)J 1 2"
<t<t2

""<~E €€S -/(t2
S,': ij- /

"") But for small c and {ij}, (2.7') implies that

(4.7) Px,B (an) {event defined by (4.6)) < exp -(S d)/E

for all x E ri  and w (see also the related argument below (3.16)). The

far right hand term of (4.5) is bounded above by (4.7). This completes the

proof of the lemma since M is arbitrary.

We now return to the proof of the theorem. Let {Z } denote the {-n)

process stopped on firts reaching g.. We have

-.)E x E {zj E Cr n.l n
0 nfgjl
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For any d > 0, the argument of Theorem 1 yields that (for small fixed

{i- j) there is a to > 0 (depending perhaps on {pj}) such that for

small ,x,B ( )(T n+Tn) < exp d/e, x E r. (to get the r.h.s.

just let G decrease to a small neighborhood of K0  in Theorem 1). Thus,

it is enough to estimate (4.8) without the (T n+l-Tn) component. In

[7, Theorem 5.3 of Chapter 6], estimates which are the equivalent to those

of Lemma 3 for the problem in [7] (those of Lemma 2.1 of Chapter 6 there)

are used to show that

lim E log I E I W - Mj(KiE0 x{ZJn g j

for x in a small neighborhood of K.. Q.E.D.1

F

- .. . . . . . . . . . . . ~.. .
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S. Extensions and Comments

Cycling and asymptotic movement among the sets K.. Let J = {j}, and

fix i, where K.i and K. are stable. The unstable sets K, are

'transient', in the sense that if K is not stable then there is a

j # I such that S j= 0. Let S j ik for all k ij. Then Theorem

2 implies that

lim an E log Tn S, x E small neighborhood of Ki,
n nJ

and with a 'very high' probability, K. will be the successor state to
J

K.. This is almost obvious, since if (e.g.) the optimal graph in the cal-

culation of W involves a link i * k # j, then cutting that link and

replacing it by the i - j link further reduces the value of W J. The

N is treated similarly. As in [7, Chapter 6], the asymptotic behavior

can be described via 'cycles'. There will be groups of the K. such that
1

for a long time the process will cycle between states within a group, then

switch to another group and cycle between its states. At the next higher

level, there will be a cycling between these groups. The groups them-

selves can be formed into higher order groups, and cycling between these

described, etc. The notation is involved, but the procedure to get the

mean times for the transitions within any order of the hierarchy is

quite similar to that in [7, Chapter 6, Section 6], and is based only on

the analog of Theorem 2 and Lemma 3 for the problem in [7]. The proced-

ure yields the (asymptotic) mean time spent in the various states.

,,a -* s .~..~
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ItG equations. Let

2(5.1) dy = b(y)dt + a(t)cy(y)dw, a (t) = A0/log(t+A 1),

where w(.) is a standard Rr-valued Wiener process. Define y ()

by

(5.21 dyn = byn dt + a(n4t)a(yn)dw, t > 0.

If a(y)a'(y) is positive definite in the interior of D1 (see (A4.2)),

then the action functional for {y (.)} is

NT

S x(TI f C [ ((s)-b( (s)))ds

for ¢(') absolutely continuous, and it equals infinity otherwise. In

general

S (T,4,) = L(4(s),O(s))ds

where

1L($,x) = sup[a,'( -b'(x)) - Pc'aC(x)G'(x)Cx].

The obvious analogs of Theorems 1, 2 and Lemma 3 hold with a
n

2 2
replaced by a (n) and E by c

Invariant measures for the y(.) of (1.2), (5.1). Let a(x)c'(x) be

bounded and uniformly positive definite in the interior of D1  and assume

that there are only a finite number of K. and let all trajectories of

(3.1) starting in D stay in D1. Let y£(.) denote the solution to

(1.2) with

" ""3" "', ; "" """"" ... "" ....... ...... . -.-..... ,
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a(t) replaced by e. In [7, Chapter 6, Theorem 4.1 to 4.3] an expression

for the invariant measure v of yE(.) is given (for small c > 0).

Let v(t) denote the measure of y(t). Then v(t) - v - zero measure
a(t)

weakly. Thus, for large t, the measure of y(t) is very close to that of

the stationary measure of yE(.) for c = a(t). We will not go through the

details, but they follow from the following considerations. Replace a(n+t)

by a piecewise constant approximation as in Theorem 1; i.e., use y (), where

we define (for any a > 1 and some T1 > 1) for each k

(5.3) dy = (y )dt + ak,t)oy)dw,

n 2
T =T t = T1 n > 1, = A0/a T =0n+l n 1' k 0 ' 0

ct(k,t) = e on [0, Tk l-Tk)

S k+1 on [T k+-T k Tk+2-Tk), etc.

The measure v in [7) is obtained from the invariant measure of

the {Z ) process, where we define {Z } here as in Theorem 2, but
n n

-Ic k
using the y (-) of (5.3) instead of the {x (.)). In fact if v7

denotes the invariant measure of the {Z n  for parameter £, and
g = Ugi, then [7, (4.1) of Chapter 6]

1

v(B) vZ(dy)E I I(Y(t))dt.'E vf) g Y fy

There is an A 0< -such that for AA 0 ,A the number of transitions of
0 0'

::{zI
{Z on the [Tk ,Tkl) interval increases rapidly enough as k -

so that a 'near' steady state is reached before the end of the kth -

interval, for large k. To see this, note the following: (a) all

S.. < and S. . < "; (b) for any d > 0, the maximum modulus of the

-. %

.,.
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eigenvalues (with modulus less than unity) of the transition probabili-

ties of the chain {Z } on the k th-interval is* < I - exp-(S0+d)/a2(k)=
n 0

k th1 - exp - (S0+d)a /A0  for large k; (c) the length of the k interval
a k k for

is > exp c 1  for some c1 > 0. Now, let Mk = exp c2  f

0 < c 2 < c I . Then

4 Mk clk

P{ (Ik n+l- Tn) < exp c IzaI

1

< Mk exp[S0 +d]ak /A0  k
k xpc 3a

exp c a

for some c3 > 0 for large enough A0. Finally, note that

k 0 k
[1 - exp - (S0+d)o. /A0] < exp - c4a

for some c4 > 0 if A0  is large enough. The assertion concerning

convergence to the invariant measure follows from this.

The potential case. Let b(x) = -B (x) and use the process

y(') of (1.2). For simplicity, add a penalty function so that b-(x)
points strictly inward on D1 for some sphere D Let B(.) be con-

tinuously differentiable and assume that there are only a finite number

of the compact Ki introduced in Section 4, and that B(x) as xl -0 0.

Let a(x) = I except close to 9D1 . Since a(x)u'(x) = identity matrix

'inside' D, (A4.1) holds.

For this case and x,y not close to D, S(x,t) has a simple charac-

terization as

inf{sums of (positive) increases in B('I(.)) as ,(t)
moves from x to ,

• Recall S. max[Si.,Si ] + d

i,j

- .. .
'.'b *-. -. . i i '..i . , - i.i i.. -, - . - - . .-- .--...- .. v .- . ... ). .
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where the inf is over all differentiable paths connecting x and y.

SThere is a similar definition for S.. and S...

The same comments apply to the system (1.1) if b(x,E) = 9(x). In

these cases the invariant measure v is concentrated on an arbitrarily

small neighborhood of the set of global minima of B(.) for small c [7].

n
Let v denote the measure of X . Then we have that v(t) and vnn

are both ultimately concentrated near the set of global minima of B(.)

also. This includes the 'annealing' result of [8].

Global function minimization via Monte Carlo. In many applications,

one can choose the noise En in b(Xn, n), and often there are choices

which greatly enhance the search. Let b(x) = -B (x), where B(.) and
x

o(o) satisfy the conditions in the above 'potential case' subsection.
--n

Then both (A4.1) and (A4.2) hold. For each m, choose i, i < m, such

that b(x,:) = -B (x,E), B(x) EB(x,E) and also such that
x

I m
- b (x,) 'M '(x) -b(x)

1

uniformly for x in any compact set. Define km+i = Ei for

k = 0,1..... We use

(5.4) X = X + a nb(X nn ) + a n%

n -k X
. and the xn(.), x C), x (") obtained from it, as in the previous sections.

With this scheme, the measure of X will ultimately be concentrated near
n

the set of global minimia of B
1

Let Sm(T,¢) be the action functional which corresponds to xn('
x

for given m. Then

• In Monte Carlo optimi:ation by simulation.

"We observe the noise corrupted function B(x,-) and its gradient, where

EB(x,2 = B(x).
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S m (T,) = m (cs),O(s))ds,xo
where

L (m,x) = sup[a'(B-bmx)) + a'a/2].

~m Si.
Define 9i ' M. in the analogous way, and let the superscript 'o' denote

the case where Em(x) is replaced by bF(x). Theorem 2 and Lemma 3 hold

for each m. As m- ,

im ~o Sm So
"j S j 1 -  j'

we have

n 0 0
(5.5) lim lim anET J  Wj - M j(K),

m n

where the limit is uniform for x in a small neighborhood of K.. Thus,

for large enough m, as t the path {xn (-)I will spend almost

all of its time in a small neighborhood of the set of global minima of

Numerous variations are possible. The i can be chosen randonly,

but according to some good 'variance reduction' method with the i

possibly dependent only within a 'cycle'. We could let the cycle length

be mn - , and use {-' k in the k-th cycle, etc.

n



References

1. S. Geman, D. Geman, "Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images," IEEE-PAMJ, January 1984.

2. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, "Optimization by
simulated annealing," Science 220, May 13 (1983), 621-680.

3. B. Gidas, "Non-stationarity Markov chains and the convergence of
the annealing algorithm," J. Statist. Phy., 39, 1985.

4. M. I. Freidlin, "The averaging principle and theorems on large
deviations," Russian Math. Surveys, 33, July-December, 1978.

S. S. R. S. Varadhan, Large Deviations and Applications, CBNS-NSF
Regional Conference Series in Applied Mathematics, SI.I, Philadelphia,
1984.

6. H. J. Kushner, "Robustness and approximation of escape times and
large deviations estimates for systems with small noise effects,"
SIANI1 J. Appl. Math., February 1984.

7. M. I. Freidlin, A. D. Ventsel, Random )erturbations of Dynamical
Systems, Springer 1983.

8. S. Geman, Chii-Ruey Hwang, "Diffusions for global optimization,"
submitted to SI.AI J. on Control and Optimization, preprint, Division

:..K of Applied Mathematics, Brown University.

"..



FILMED

DTIC
'.t 'e


